
Space and Speed Tradeoffs in TCAM Hierarchical
Packet Classification

Alex Kesselman∗, Kirill Kogan†, Sergey Nemzer‡ and Michael Segal§
∗Google, Inc.

Email: alx@google.com
†Cisco Systems, Netanya, Israel

and
Communication Systems Engineering Dept., Ben Gurion University, Beer-Sheva, Israel

Email: kkogan@cisco.com
‡School of Computer Science, Tel Aviv University, Israel

and
Compugen Ltd., Tel Aviv, Israel
Email: sergey.nemzer@cgen.com

§Communication Systems Engineering Dept., Ben Gurion University, Beer-Sheva, Israel
Email: segal@cse.bgu.ac.il

Abstract— Hierarchical packet classification is a crucial mecha-
nism necessary to support many Internet services such as Quality
of Service (QoS) provisioning, traffic policing, and network in-
trusion detection. Using Ternary Content Addressable Memories
(TCAMs) to perform high-speed packet classification has become
the de facto standard in industry. TCAMs compare packet
headers against all rules in a classification database concurrently
and thus provide high throughput unparalleled by software-based
solutions. However, the complexity of packet classification policies
have been growing rapidly as number of services deployed
on the Internet continues to increase. High TCAM memory
requirement for complex hierarchical policies is a major issue
as TCAMs have very limited capacity. In this paper we consider
two optimization problems of dual nature: the first problem is to
minimize the number of TCAM entries subject to the constraint
on the maximum number of levels in the policy hierarchy; the
second problem is to minimize the number of levels in the policy
hierarchy subject to the constraint on the maximum number
of TCAM entries. We propose efficient dynamic programming
algorithms for these problems, which reduce the TCAM memory
requirement. To the best of our knowledge, this is the first work
to study the fundamental tradeoff between the TCAM space and
the number of lookups for hierarchical packet classification. Our
algorithms do not require any modifications to existing TCAMs
and are thus relatively easy to deploy.

I. INTRODUCTION

Growing usage and diversity of applications and attacks on
the Internet makes fine-grained traffic classification the key
critical issue. As a result, high-speed algorithms that scale to
large multi-field databases have become a widespread require-
ment for a variety of network services including QoS band-
width management, firewalls and intrusion detection. Many
complicated classification policies are naturally represented
in a hierarchical fashion. For instance, the top level of a
hierarchical policy of an Internet Service Provider (ISP) can
match the customer company, the secondary level can match
the department of this company, and the third level can
match specific applications. In a nutshell, a router maintains a

classification policy under which incoming or outgoing packets
are classified by matching against a set of rules. In addition,
each rule can also specify a set of actions to be taken on
packets matching this rule. Supporting hierarchical packet
classification is a challenging task as it requires to perform
matching at multiple levels of hierarchy in the line rate.

In this work we explore hierarchical classification with
Ternary Content-Addressable Memory (TCAM). A TCAM is
a memory device that stores data as a massive array of fixed-
width ternary entries. A ternary entry is a string of bits where
each bit is either 0, 1 or × (“don’t care”). The TCAM searches
the packet in parallel against all the ternary entries stored
in the memory and produces the first rule that matches the
packet. Remarkably, TCAM guarantees that each lookup is
done in constant time. Usually each TCAM entry is wide
enough to contain the concatenation of all the packet fields
to be matched, possibly having room for some extra bits. If
a matching rule consists solely of fields that specify exact or
prefix matches, then it can be represented by a TCAM entry
in a straightforward manner (a prefix match field is padded
with the appropriate number of ×’s in the least significant
bits). A range value may be converted to multiple prefixes
or exact entries to fit the TCAM format. However, TCAMs
have some limitations. Current TCAMs can support up to 133
million searches per second for 144-bit wide keys, and can
store 128K ternary entries in a single device. TCAMs can
also be configured as 72-bit and 288-bit width.

To implement a hierarchical policy, the classifier needs
to access TCAM for each level of hierarchy. However, the
number of TCAM lookups that can be done in the line rate is
very limited. To address this bottleneck, a hierarchical policy
can be converted to an equivalent policy with less levels
of hierarchy through the process of flattening. Unfortunately,
flattening may significantly increase the number of TCAM
entries. Thus, there arises an interesting tradeoff between the

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 13, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

depth (number of levels in the hierarchy) of a hierarchical
policy and the required TCAM space. On the one hand, the
router may not be able perform d consecutive TCAM lookups
for a hierarchical policy of depth d in the line rate. On the
other hand, the policy flattened to a single level may not fit
the TCAM memory as such a conversion may result in the
TCAM space requirement exponential on d.

A. Our Results

In this paper we study two major problems dealing with
hierarchical packet classification using TCAM. We are given
a policy P with d levels of hierarchy and the goal is to convert
P to an equivalent policy P ′ that needs to fulfill certain
constraints minimizing the number of lookups or TCAM
entries required. The proposed algorithms are very efficient
as the running time depends only on the policy depth rather
than the number of TCAM entries, which can be orders of
magnitude larger. Moreover, our algorithms do not require any
modifications to existing TCAMs being very easy to deploy.
Due to lack of space the simulation results are omitted from
this extended abstract and presented in the full version of the
paper.

In the space optimization problem, we minimize the number
of TCAM entries required by P ′ subject to a limit on the
maximum number of hierarchy levels. The motivation behind
this problem is to reduce the required TCAM space allowing
packet classification in wire speed without incurring a possibly
huge memory blowup if P is flattened to a single level.
We propose two dynamic programming algorithms for this
problem: the first algorithm is more efficient but is restricted
only to policies that match disjoint fields in a packet header
at different levels of the hierarchy; the second algorithm is
slightly more complicated and can process general policies.
The running time of the first and the second algorithm is at
most O(d3) times the number of terminal (leaf) classes in P .

In the speed optimization problem, we minimize the number
of hierarchy levels in P ′ subject to a limit on the maximum
number of TCAM entries. The rationale of this problem is to
utilize the available TCAM capacity as efficiently as possible
to reduce the number of lookups. We propose an algorithms
that applies one of our speed optimization algorithms as
a subroutine. This algorithm adds a factor of O(log d) to
the running time of the corresponding speed optimization
algorithm.

B. Related Work

Designing algorithms that scale to millions of rules and mil-
lions of searches per second has been and continues to be an
important line of research. Many software-based sophisticated
approaches have been proposed in the past few years including
Recursive Flow Classification [6], Crossproducting [14], [15],
HyperCuts [13], Extended Grid-of-Tries [1] and Aggregated
Bit Vector [2], to name just a few. Comprehensive surveys
on this subject can be found in [4], [8], [16]. The complexity
bounds derived by means of computational geometry imply
that any software-based packet classifier with N rules and

k > 2 fields, uses either O(Nk) space and O(log N) time
or O(N) space and O(logk−1 N) time [12]. Thus, many
software-based approaches are either too slow or too memory
intensive for k > 2. Though packet classification algorithms
using decision trees achieve better time-space tradeoffs [7],
[17], they exploit statistical characteristics that are not reliable
in general.

Due to the inherent limitations of software-based ap-
proaches, industry has increasingly employed hardware-based
Ternary Content Addressable Memory (TCAM) for performing
packet classification making it the dominant method [18], [19],
[20]. A large class of packet classification systems that require
up to a few hundred thousand rules have adopted TCAM for
packet classification at multigigabit speeds [3], [5]. Several
schemes for converting ranges to TCAM rules have been
proposed in [9], [10], [11].

C. Paper Organization

The rest of the paper is organized as follows. The model
description appears in Section II. The algorithms for space and
speed optimization are presented in Section III and Section IV,
respectively. We conclude with Section V.

II. MODEL DESCRIPTION

In this section we introduce the formal notation and define
the Hierarchical Speed and Space Optimization problems.

A. Notation

A packet header contains k fields, where a field Hi (1 ≤
i ≤ k) is a string of Wi bits. In an IPv4 packet, classifiers
usually check the following six fields: the Type of Service (8
bits), the Destination Address (32 bits), the Source Address
(32 bits), the Destination Port (16 bits), the Source Port (16
bits), and the Protocol Type (8 bits). Note that classifiers may
access other fields besides TCP/IP header such as MAC or
application headers. Packets are matched against classification
rules stored in a classification database.

The classification database of a router consists of a finite
set of n rules, R1 . . . Rn. Each rule R specifies matchings for
one or more (up to k) fields. For each header field Hi, a rule
can specify a filter Fi of length |Fi| (|Fi| ≤ |Hi|), which can
be any of two kinds of matches: exact match or prefix match.

1) A packet header field Hi exactly matches the filter Fi

if and only if Hi = Fi.
2) A packet header field Hi is a prefix match for the filter

Fi if and only if the |Fi| bits of Hi are equal to Fi.

A packet p matches rule R if each of p’s header fields matches
the corresponding filter of R if any. The header fields for which
filters are not specified by the rule are matched in TCAM by
a wildcard filter (”don’t care”). Since a packet may match
multiple rules, the classification problem is to determine the
first matching rule in an ordered sequence of rules.

There is also a third type of matching, so called range
matching, where the header value should fall into a contiguous
interval specified by the filter. In typical packet classifiers,
such fields as the source and destination port numbers are

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 13, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

represented as ranges rather than prefixes. Though range rules
cannot be directly stored in TCAMs, they are usually converted
to a corresponding set of prefixes each of which is stored in a
separate TCAM entry. In this paper we deal with classification
rules that reside in a TCAM device and assume that all filters
are exact match or prefix (the classification database may
undergo a conversion if necessary [10], [11], [9]).

We define a class C to be an ordered set of rules and a
set of actions to be taken on the packet. For instance, a QoS
action may be packet marking with a pre-defined DSCP value
while a security action may be packet accept or reject. We
denote by |C| the number of rules or cardinality of C. We
say that the class is matched if the first matching rule belongs
to this class. A policy P is an ordered set of classes. The last
class of a policy is usually so called default class matching
all packets that have not been matched by the other classes.
Note that a global order of the rules is obtained by listing the
rules in the corresponding classes.

The action of a class can also apply another policy in re-
cursive manner, creating a hierarchical policy. Each recursive
application creates a new level of hierarchy. A hierarchical
policy can be viewed as an directed and acyclic graph GP

with classes acting as nodes and each edge representing a
recursive policy application (see Figure 1). A directed path
C = C1 → C2 → · · · → Cd from a root class with no
incoming edges to a terminal class with no outgoing edges is
called a class chain. The length of the longest class chain is
defined as the policy depth. In order to match all rules on a
class chain C, a packet has to match rules R1 ∈ C1, R2 ∈
C2, . . . , Rd ∈ Cd. Observe that the total number of class
chains equals the number of terminal classes.

��� ���

���������

������

������

���

���

�

Fig. 1. An example of policy graph Gp.

In the actual implementation of a hierarchical classifier, a
special header field H0 is added to a packet at all but the
first level of the hierarchy to identify the class sub-chain S =
C1 → C2 → · · · → Cl (1 < l ≤ d) matched by the packet up
to and including level l. In this way, the classifier can track the
path of the packet in GP and take the appropriate actions as
matching proceeds. Furthermore, all the rules corresponding
to the children of the class Cl in GP have a common filter
F0 that identifies the class sub-chain S. As a result, different
class chains in a hierarchical classifier are independent in the
sense that distinct instances of the same class are created for
each node in GP . We assume that TCAM entries are wide
enough to store this extra filter.

Hierarchical policies allow a high degree of flexibility and

modularity in policy definition. However, a separate TCAM
lookup needs to be done for each level of the hierarchy in
the process of classification, which may incur large delays
for policies with high depth. To speed up the classification
process, a hierarchical policy can be converted to an equivalent
policy of lower depth. At the same time, such a conversion can
significantly increase the number of TCAM entries required
to store the intersected rules. We define the TCAM space M
of a policy as the total number of rules in all levels of the
classification hierarchy.

The operations defined below deal with policy flattening.
We define the intersection of two classes C × C′ as a class
consisting of all possible intersections of rules R×R′, where
R ∈ C and R′ ∈ C′ that sequentially applies actions of C
and C′. The intersection of rules R × R′ is defined as the
union of filters for disjoint header fields and the intersection
of filters for common header fields in R and R′. Next we will
describe how to intersect two filters Fi and F ′

i specified for a
common header field Hi. Suppose without loss of generality
that |Fi| ≤ |F ′

i |. If Fi is a prefix of F ′
i , then R × R′ will

contain filter F ′
i . Otherwise, R × R′ = R∅ is a special empty

rule that does not match any packet.
Observe that |C × C′| ≤ |C| · |C′|. For example, consider

the subsequent classification policy. Let C consist of three
rules [ToS = 1], [ToS = 2] and [ToS = 3] and C′

consist of two rules [DstPort = 21] and [DstPort = 80].
In this case, |C × C′| = 6 as the filters are specified for
disjoint header fields and C×C′ contains the following rules:
[ToS = 1, DstPort = 21], [ToS = 2, DstPort = 21],
[ToS = 3, DstPort = 21], [ToS = 1, DstPort = 80],
[ToS = 2, DstPort = 80], [ToS = 3, DstPort = 80]. At
the same time, the TCAM space required to represent the
intersection of classes may be smaller than the cardinality
of the classes themselves if filters are specified for common
header fields. For instance, suppose that C contains three rules
[ToS = 1], [ToS = 2] and [ToS = 3] and C′ contains two
rules [ToS = 3] and [ToS = 4]. We have that |C × C′| = 1
and C × C′ includes just one rule [ToS = 3].

B. Problem Statement

We assume that it is possible to extract all relevant packet
fields in a single step according to the classification format. We
say that two packet classifiers are (semantically) equivalent if
and only if they apply the same actions on each packet. Next
we define the optimization problems studied in this paper.

Definition 2.1: Hierarchical Space Optimization Prob-
lem: Given a hierarchical policy P with depth d > 1, the
goal is to convert P to an equivalent policy P ′ with depth of
at most l (l < d) that minimizes the required TCAM space.

Definition 2.2: Hierarchical Speed Optimization Prob-
lem: Given a hierarchical policy P that requires TCAM space
of M , the aim is to convert P to an equivalent policy P ′

that minimizes the policy depth subject to the constraint that
the TCAM space cannot exceed the target TCAM space A
(A > M).

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 13, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

III. SPACE OPTIMIZATION

In this section we consider the problem of minimizing the
TCAM space subject to the constraint on the policy depth.
First we present an algorithm for the natural case where rules
in any class chain apply only to disjoint header fields. Then we
propose an algorithm for the general case where we impose
no restrictions on the policy whatsoever.

A. Well-Structured Hierarchies

In this section we study well-structured hierarchical policies
in which rules in any class chain apply only to disjoint
header fields. Such hierarchies have the following important
property, which allows us to use a fast dynamic programming
algorithm operating merely with cardinalities of intersected
classes without actually intersecting the rules themselves until
the final stage.

Observation 1: In a well-structured hierarchy, for any class
chain C = C1 → C2 → · · · → Cd we have that the cardinality
of the intersection of all classes in C, that is |C1 ×C2 × · · · ×
Cd|, equals the product of the cardinalities of the individual
classes |C1| · |C2| · · · |Cd|.

The space optimization algorithm for well-structured hier-
archies (SOAW) is presented on Figure 2. SOAW proceeds
by first merging all chains of length greater than l into a single
virtual class without actually intersecting the rules. Then each
virtual merged class is splitted l − 1 times in an optimal
way using a level splitting algorithm based on the dynamic
programming technique. Finally, for each virtual class the
rules of the corresponding intersected classes are intersected to
produce the output policy. Observe that class chains of length
smaller than l are left untouched by SOAW . The running
time of SOAW is dominated by the running time of the level
splitting algorithm, which is applied to all long chains in P .
Recall that the total number of class chains equals the number
of terminal classes.

Input: policy P of depth d, integer l (l < d)
Output: policy P ′ equivalent to P of depth l

• Step 1: Merging Long Chains. For each class chain C =
C1 → C2 → · · · → Cd in P such that d > l create a virtual
class C = C1×C2×· · ·×Cd that represents the intersection
of all classes in C (without intersecting the rules).

• Step 2: Splitting Merged Chains. Split each merged virtual
class l − 1 times using the level splitting algorithm.

• Step 3: Intersecting Rules. For each virtual class, intersect
the rules of the corresponding intersected classes

• Step 4: Creating Output Policy. Output P ′ as a union of
all the original chains of length at most l and the converted
long chains.

Fig. 2. Space optimization algorithm (SOAW) for well-structured hierar-
chies.

Now we describe how to divide the level splitting problem
into two sub-problems and combine solutions to these sub-
problems into a solution to the original problem. For an
intersected class C = C1 × C2 × · · · × Cd, we denote by
V (i, j, n) (1 ≤ i < d, i < j ≤ d) the cost of an optimal

solution for the problem of n splittings in the intersected sub-
class Ci,j = Ci × Ci+1 × · · · × Cj . The cost is measured as
the cumulative cardinality of the resulting n + 1 sub-classes.
We define initial values for the special case of n = 0 where
nothing needs to be done and the special case of n > j − i
where no feasible solution exists:

V (i, j, n) =

{
|Ci,j | : n = 0,
∞ : n > j − i.

(1)

The main recurrence relation is defined as follows for n > 0
and n ≤ j − i:

V (i, j, n) = min
u

(V (i, u, 0) + V (u + 1, j, n − 1)) (2)

for i ≤ u ≤ j − n.
Basically, in order to make n level splittings we consider

all possibilities for the first splitting and perform exhaustive
search over all the remained at most n−1 splittings in Cu+1,j

sub-class.

� �	�

�
 ����� ��������

���
��
���

� � � �

Fig. 3. Dynamic programming for well-structured policy.

Our aim is to minimize the overall cost of the produced
solution. The level splitting algorithm (LSA) appears on
Figure 4.

Input: class C (intersection of d classes), integer l (l < d)
Output: chain C′ of length l

• Step 1: Initialization. Initialize V (i, j, n) for n = 0 and
n > j − i according to Equation 1.

• Step 2: Calculation. Calculate all values V (i, j, n) starting
from n = 1 up to n = l−1 for n ≤ j−i using the recurrence
Equation 2 and record the splitting of minimum cost.

• Step 3: Reconstructing the optimal solution. Construct the
chain C′ by splitting the classes of C with respect to the
optimal solution of minimum cost V (1, d, l − 1).

Fig. 4. Level splitting algorithm (LSA) for well-structured hierarchies.

It is easy to see that the running time of LSA is O(d2 · l)
and the space complexity is O(d2 ·l), which is very reasonable
since d and l are typically small numbers. The next theorem
shows the correctness of LSA.

Theorem 1: The level splitting algorithm (LSA) finds an
optimal solution of minimum cost for the problem of n
splittings (n > 1) in a class formed as intersection of d classes
(d > n).

Proof: The proof is by induction on the number of
splittings n.

Basis (n = 0). Clearly, LSA finds an optimal solution for
n = 0 since it just returns the original input as no splittings
are necessary.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 13, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

Step (n → n + 1). Suppose that LSA finds an optimal
solution for the number of splittings of at most n and let
us show that it also finds an optimal solution for n + 1
splittings. Note that LSA considers all options for making
the first splitting, one of which necessarily corresponds to an
optimal solution. Having done an optimal first splitting, it must
be the case that the rest of this optimal solution consists of
an independent optimal solution for the right subclass with
at most n splittings. By the induction hypothesis, LSA finds
an optimal solution for the right sub-class with at most n
splittings. Therefore, LSA finds an optimal solution for at
most n + 1 splittings.

B. Arbitrary Hierarchies

In this section we deal with the general case of arbitrary
hierarchies. Unfortunately, such hierarchies require to calculate
the actual intersection of the rules for an intersection of classes
in order to obtain its cardinality as demonstrated by the next
observation.

Observation 2: In an arbitrary hierarchy, for any class chain
C = C1 → C2 → · · · → Cd we have that the cardinality of
the intersection of all classes in C, that is |C1×C2×· · ·×Cd|,
is bounded from above but may not be equal to the product of
the cardinalities of the individual classes |C1| · |C2| · · · |Cd|.

That necessitates using a slightly more complicated dynamic
programming algorithm for level merging compared to the
level splitting algorithm used for well-structured hierarchies.
The space optimization algorithm for general hierarchies
(SOAG) appears on Figure 5. SOAG merges all chains of
length greater than l by running a level merging algorithm
based on the dynamic programming technique. The dominat-
ing component of the running time of SOAG is the level
merging algorithm, which processes all long chains in P .

Input: policy P of depth d, integer l (l < d)
Output: policy P ′ equivalent to P of depth l

• Step 1: Merging Long Chains. Merge all chains of length
d′ greater than l using the level merging algorithm with the
number of merges m = d′ − l.

• Step 2: Creating Output Policy. Output P ′ as a union of
all the original chains of length at most l and the converted
long chains.

Fig. 5. Space optimization algorithm (SOAG) for general hierarchies.

In what follows we present a way of dividing the level merg-
ing problem into two sub-problems and combining solutions to
these sub-problems into a solution to the original problem. For
a class chain C = C1 → C2 → · · · → Cd, define V (i, j, n)
(1 ≤ i < d, i < j ≤ d) as the cost of an optimal solution
for the problem of merging n levels in the class sub-chain
Ci,j = Ci → Ci+1 → · · · → Cj . We estimate the cost of a
solution as the total cardinality of the produced j − i− n + 1
sub-classes. Initial values are set for the special case of n = 0
where no merges have to be performed, the special case of
n > j − i which permits no feasible solution and the case of
n = j − i where all levels are completely merged. Note that
there is no need to merge more than d− l levels to obtain the

desired solution. We define initial values for the special case
of n = 0 where nothing needs to be done and the special case
of n > j − i where no feasible solution exists:

V (i, j, n) =

{ ∑j

u=i
|Cu| : n = 0,

∞ : n > j − i,
|Ci × · · · × Cj | : n = j − i, n ≤ d − l.

(3)

We specify the main recurrence relation for n > 0 and
j − i > n in the following way:

V (i, j, n) = min
u

(V (i, u, u − i) + (4)

V (u + 1, j, n − (u − i))) (5)

for i ≤ u ≤ i + n.
Essentially, we cover all options for a leftmost merged class

sub-chain Ci,u with u − i mergings. Then we consider all
possible sub-divisions of the remaining n−(u−i) mergings of
the class sub-chain Cu+1,j . The goal is to minimize the total

�������

�����

�
��� �����������

�	��	
�

���� �

����
��� ���	

��� �

Fig. 6. Dynamic programming for a chain with arbitrary structure.

cost of the resulting solution. The level merging algorithm
(LMA) can be found on Figure 7.

Input: chain C (of length d), integer m (m < d)
Output: chain C′ of length d − m

• Step 1: Initialization. Initialize V (i, j, n) for n = 0, n >
j − i, and n = j − i (n ≤ m) according to Equation 3.

• Step 2: Calculation. Calculate all values V (i, j, n) starting
from n = 1 up to n = m for n > j − i using the recurrence
Equation 4 and record the merging of minimum cost at each
stage.

• Step 3: Reconstructing the optimal solution. Construct the
chain C′ by merging the classes of C′ with respect to the
optimal solution of minimum cost V (1, d, m).

Fig. 7. Level merging algorithm (LMA) for general hierarchies.

We obtain that the running time of LMA is O(d ·m2) and
the space complexity is O(d2 · m). The subsequent theorem
demonstrates the correctness of LMA.

Theorem 2: The level merging algorithm (LMA) finds an
optimal solution of minimum cost for the problem of merging
(n > 1) levels in a chain of length d (d > n).

Proof: The proof is by induction on the number of
mergings n.

Basis (n = 0). Obviously, LMA finds an optimal solution
for n = 0 since it just returns the original input as no mergings
need to be done.

Step (n → n + 1). Assume that LMA finds an optimal
solution for the number of mergings of at most n and let us
prove that it finds an optimal solution for n + 1 mergings as
well.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 13, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

Observe that LMA examines all possibilities for making z
(1 ≤ z ≤ n + 1) mergings in the leftmost class sub-chain. It
must be the case that one of these mergings is a maximal
merging in an optimal solution. Having done an optimal
first merging, the other mergings in this optimal solution is
independent optimal solution for the right class sub-chain
under at most n + 1 − z mergings. If the first merging is
an empty merging (i.e. z = 0), then the above argument is
applied to the right class sub-chain. According to the induction
hypothesis, LMA finds an optimal solution in the right class
sub-chain with at most n+1−z ≤ n mergings for the first non-
empty merging (i.e. z > 0). Hence, LMA finds an optimal
solution for at most n + 1 mergings.

IV. SPEED OPTIMIZATION

In this section we study the problem of minimizing the num-
ber of levels in the policy hierarchy subject to the constraint on
the maximum TCAM space. We utilize the space optimization
algorithms from the previous section. The speed optimization
algorithm is presented on Figure 8.

Input: policy P with TCAM space M of depth d, TCAM space A
(A > M)
Output: policy P ′ equivalent to P with TCAM space of at most A

Perform binary search on the policy depth between 1 and
d by applying either SOAW or SOAG on P depending
on the structure of P ’s hierarchy and find the minimum
depth l for which the TCAM space of the produced
policy P ′ does not exceed A.
Output P ′.

Fig. 8. Speed optimization algorithm.

Generally speaking, we need to find the optimal value l of
the policy depth and then optimize the TCAM space of the
transformed policy P ′ for depth l. The binary search is per-
formed because this value is not known in advance. Once we
have found the optimal depth, the space optimization algorithm
guarantees minimization of the TCAM space. The running
time of the speed optimization algorithm is log d times the
running time of SOAW or SOAG, that is at most O(d3) times
the number of terminal classes in P , respectively. Remarkably,
the running time of the speed optimization algorithm does not
depend on A, which can be by orders of magnitude larger than
d.

V. CONCLUSION

Hierarchical packet classification is a key operation needed
in provisioning of many crucial network services. One of
the major challenges in design of the next generation high-
speed switches is to deliver wire-speed packet classification.
TCAMs are the dominant industry standard used for multi-
gigabit classifiers. However, as packet classification policies
grow in depth and complexity, there arises a fundamental
tradeoff between the TCAM space and the number of lookups
for hierarchical policies.

In this paper we propose novel algorithms based on dynamic
programming for solving two important problems concerned

with hierarchical packet classification. The algorithms for the
first problem minimize the TCAM space given a constraint on
the policy depth while the algorithm for the second problem
minimizes the policy depth subject to the constraint on the
maximum TCAM space. Our algorithms do not require any
modification to existing packet classification systems and can
be easily deployed. As far as we know, this is the first work
to study TCAM speed and space optimization for hierarchical
packet classification.

REFERENCES

[1] F. Baboescu, S. Singh, and G. Varghese, ”Packet Classification for Core
Routers: Is there an Alternative to CAMs?”, Proc. of IEEE INFOCOM,
2003.

[2] F. Baboescu and G. Varghese, ”Scalable Packet Classification”, Proc. of
ACM SIGCOMM, 2001.

[3] J. Bolaria and L. Gwennap, ”A guide to
search engines and networking memory”, http :
//www.linleygroup.com/reports/memory guide.html, 2004.

[4] H. J. Chao, ”Next Generation Routers”, Proceedings of the IEEE, Vol.
90, No. 9, pp. 1518-1558, 2002.

[5] P. Gupta, K. Etzel and J. Bolaria, ”A Scalable and Cost-Optimized
Search Subsystem for IPv4 and IPv6”, EE Times NetSeminar, http :
//www.eetimes.com/netseminar.html, 28 June 2004.

[6] P. Gupta and N. McKeown, ”Packet Classification on Multiple Fields”,
Proc. of ACM SIGCOMM, pp. 147-160 , 1999.

[7] P. Gupta and N. McKeown, ”Packet classification using hierarchical
intelligent cuttings”, Proc. of Hot Interconnects VII, Aug. 1999.

[8] P. Gupta and N. McKeown, ”Algorithms for Packet Classification”, IEEE
Network, pp. 24-32, March/April 2001.

[9] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, ”Algorithms
for advanced packet classification with ternary cams”, Proc. of ACM
SIGCOMM, pp. 193204, Aug. 2005.

[10] H. Liu, ”Efficient mapping of range classifier into ternary-cam”. Proc.
of the Hot Interconnects, pp. 95100, 2002.

[11] J. van Lunteren and T. Engbersen, ”Fast and scalable packet classifica-
tion”, IEEE Journals on Selected Areas in Communications, Vol. 21, No.
4, pp. 560571, 2003.

[12] M. H. Overmars and A. F. van der Stappen, ”Range searching and point
location among fat objects”, Journal of Algorithms, Vol. 21, No. 3, pp.
629656, 1996.

[13] S. Singh, F. Baboescu, G. Varghese, and J. Wang, ”Classification using
Multidimensional Cutting”, Proc. of ACM SIGCOMM, 2003.

[14] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, ”Fast and
Scalable Layer Four Switching”, Proc. of ACM SIGCOMM, 1998.

[15] D. E. Taylor and J. Turner, ”Scalable Packet Classification using
Distributed Crossproducting of Field Labels”, Technical Report WUCSE-
2004-38 Washington Univ., St. Louis, 2004.

[16] G. Varghese, ”Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices”, Morgan Kaufmann Publishers Inc.,
2004.

[17] T. Y. C. Woo, ”A modular approach to packet classification: Algorithms
and results”, Proc. of IEEE INFOCOM, pp. 12131222, 2000.

[18] ”Cypress Semiconductor Corp. Content addressable memory”, http :
//www.cypress.com/.

[19] ”Integrated Device Technology, Inc. Content addressable memory”,
http : //www.idt.com/”.

[20] ”Netlogic Microsystems. Content addressable memory”, http :
//www.netlogicmicro.com/.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 13, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

